Necessary and Sufficient Conditions for Complete Convergence in the Law of Large Numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and Sufficient Conditions for the Uniform Law of Large Numbers in the Stationary Case

Necessary and sufficient conditions for the uniform law of large numbers for stationary ergodic sequences of random variables are given. Three different types of conditions are investigated and established. Firstly it is shown that eventually total boundedness in mean is necessary and sufficient. This fact enables one to deduce the equivalence among almost sure convergence, convergence in mean,...

متن کامل

Necessary and sufficient conditions for the strong law of large numbers

Under some mild regularity on the normalizing sequence, we obtain necessary and sufficient conditions for the Strong Law of Large Numbers for (symmetrized) U-statistics. We also obtain nasc’s for the a.s. convergence of series of an analogous form.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Necessary and sufficient conditions for parameter convergence in adaptive control

-Using Generalized Harmonic Analysis, a complete description of parameter convergence in Model Reference Adaptive Control (MRAC) is given in terms of the spectrum of the exogenous reference input signal. Roughly speaking, if the reference signal "contains enough frequencies" then the parameter vector converges to its correct value. If not, it converges to an easily characterizable subspace in p...

متن کامل

Sufficient and Necessary Conditions of Complete Convergence for Weighted Sums of ρ-Mixing Random Variables

In many stochastic models, the assumption that random variables are independent is not plausible. So it is of interest to extend the concept of independence to dependence cases. One of these dependence structures is ρ∗-mixing. Let {Xn, n ≥ 1} be a sequence of random variables defined on a probability space Ω,F, P , and let Fm n denote the σ-algebra generated by the random variables Xn,Xn 1, . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1980

ISSN: 0091-1798

DOI: 10.1214/aop/1176994835